
Cluster Techniques

Last updated: September 22 2022

2

Cluster Techniques
Contents

1. What is a Cluster?

2. Why use a Cluster?

3. Components of a Cluster

4. What is a scheduler?

5. SLURM Scheduler

3

What is a Cluster?

A computer cluster is a set of connected computers, usually connected by a
high-speed network, that work together as if they are a single, much more
powerful machine. A computer cluster may range from a simple two-node
system connecting two personal computers to a supercomputer.

https://susedefines.suse.com/definition/supercomputer/

4

Why use a Cluster?

A computer cluster can provide numerous advantages over a dedicated single
server, such as:
● Faster processing speeds
● Wider availability of resources
● Greater reliability

5

● If you are utilizing dedicated nodes, you must consider factors such as user coordination of
the resources, underutilization of the resources, and the inability to scale this approach.

● If you are utilizing a cluster environment, less user coordination is required, resources are
efficiently utilized, and the approach is highly scalable.

Why use a Cluster?

6

Components of a Cluster
Login Node Datacenter

Network

Communications Network

Storage

High speed Network

Compute
Nodes

Hardware components will
vary from cluster to cluster
based on the need. Typical
hardware you will find is:
● Login Node
● At least 1 Network

(communications and/or
High speed)

● Storage (this may be on
a separate server or
could also be on the
Login Node)

● A group of Compute
nodes

7

Components of a Cluster
● Login Node: The login node is used for developing codes, preparing scripts to use with

the scheduler, submitting and monitoring jobs in the scheduler, analyzing results, and
transferring data.

● Communications and/or High Speed Network: The means of communication
between all aspects of the cluster (nodes/storage/external networks).

● Storage: The location/locations that is shareable to the Login and Compute nodes in a
cluster where data is stored.

● Compute node: A compute node is where the real work of the cluster is done.
Compute nodes may contain specialized hardware to perform computations such as GPU,
CPU, DPU, etc.

● Scheduler: Software that tracks resources available on the cluster while also scheduling
submitted jobs in an organized manner.

8

What is a Scheduler?
● According to HPCWiki, a scheduler is software that implements a batch system on a cluster.
● Users do not typically run their jobs/calculations directly and interactively (as they do on

their personal workstations or laptops), instead they submit non-interactive batch jobs to
the scheduler.

● Although there is the ability to run interactive jobs when needed, the scheduler stores the
jobs, evaluates their resource requirements and priorities, and distributes the jobs to
suitable compute nodes

User Login
Node Job Submitted

Jobs

Job Partition
Scheduler

Batch System

Scheduling basics. Scheduling Basics - HPC Wiki. (n.d.). Retrieved September 12, 2022, from
https://hpc-wiki.info/hpc/Scheduling_Basics#:~:text=A%20scheduler%20is%20software%20that,batch%20jobs%20to%20the%20scheduler.

https://hpc-wiki.info/hpc/Scheduling_Basics#:~:text=A%20scheduler%20is%20software%20that,batch%20jobs%20to%20the%20scheduler.

9

Slurm Scheduler

Slurm is an open source, fault-tolerant, and highly scalable cluster management
and job scheduling system for large and small clusters running the Linux
Operating System.
Slurm has three key functions:
1. Slurm allocates access to resources (compute nodes) to users for a

duration of time.
2. Slurm also provides the ability for starting, executing, and monitoring jobs

(either serial or parallel jobs) on nodes that are allocated.
3. Slurm also manages the queueing of pending work.

Slurm Workload manager. Slurm Workload Manager - Overview. (n.d.). Retrieved September 9, 2022, from https://slurm.schedmd.com/overview.html

10

Job submission parameters

--ntasks=<x> Specifies how many instances are to be executed

--nodes=<x> Specifies how many nodes are to be used

--cpus-per-task=<x> Specifies how many cpu cores are to be used per ntask

--partition=<partition name> Specifies which partition the job will be run on

--time=HH:MM:SS Specifies the max time the job can run (Walltime)

--gres=gpu:<x> Specifies to use GPU resources and how many GPUs to allocate

--nodelist=<node name> Specifies running job on a particular node.

--label Prepends the task number to line of stdout/err

Slurm Scheduler

11

Common Slurm commands

List all current jobs in the shared partition for a user:
squeue -u <username> -p shared

List detailed information for a job (useful for troubleshooting):
scontrol show jobid -dd <jobid>

List status info for a currently running job:
sstat --format=AveCPU,AvePages,AveRSS,AveVMSize,JobID -j <jobid>
--allsteps

Once your job has completed, you can get additional information that was not
available during the run. This includes run time, memory used, etc.
To get statistics on completed jobs by jobID:
sacct -j <jobid> --format=JobID,JobName,MaxRSS,Elapsed

Slurm Scheduler

12

List all current jobs for a user:
squeue -u <username>

List all running jobs for a user:
squeue -u <username> -t RUNNING

List all pending jobs for a user:
squeue -u <username> -t PENDING

List priority order of jobs for the current user (you) in a given partition:
showq-slurm -o -u -q <partition>

To view the same information for all jobs of a user:
sacct -u <username> --format=JobID,JobName,MaxRSS,Elapsed

Common Slurm commands
Slurm Scheduler

13

Common Slurm commands
To cancel one job:
scancel <jobid>

To cancel all the jobs for a user:
scancel -u <username>

To cancel all the pending jobs for a user:
scancel -t PENDING -u <username>

To cancel one or more jobs by name:
scancel --name myJobName

To hold a particular job from being scheduled:
scontrol hold <jobid>

Slurm Scheduler

14

Common Slurm commands

To release a particular job to be scheduled:
scontrol release <jobid>

To requeue (cancel and rerun) a particular job:
scontrol requeue <jobid>

Slurm Scheduler

15

Slurm command examples

Interactive srun non-GPU

$ srun --ntasks=5 --nodes=1 --cpus-per-task=2 --partition=gpu --time=4:00:00 --label hostname

Output would look similar to:

0: dgx01

1: dgx01

2: dgx01

3: dgx01

4: dgx01

Slurm Scheduler

16

Slurm command examples
Interactive srun with GPU

$ srun --ntasks=1 --nodes=1 --cpus-per-task=1 --partition=gpu --gres=gpu:1 --time=4:00:00 nvidia-smi

This command allows 1 task utilizing 1 cpu and 1 gpu on the partition named ‘gpu’ with a wall time
of 4 hrs and it will run nvidia-smi

Output would look similar to:

Slurm Scheduler

17

Slurm Batch Jobs
To run a Slurm job using sbatch, a job script needs to be created that instructs
what application is going to be run and what resources are required.

The first line of the script needs to instruct the script is a bash script:
#!/bin/bash

Following that line will be #SBATCH entries that pass the options to SLURM
examples (there are more see : Slurm sbatch)
#SBATCH -j <job_name> Names the job

#SBATCH -p <partition> Instructs what partition job will run

#SBATCH --nodes=<number> Requests the number of nodes allocated

#SBATCH --ntasks=<number> Instructs number of tasks will be run

#SBATCH --cpus-per-task=<number> Allocate number of cpus for each task

To run the sbatch job: $ sbatch <job-script-name>

Slurm Scheduler

https://slurm.schedmd.com/sbatch.html

18

Batch mode non-GPU
#!/bin/bash
#SBATCH --partition=gpu # Sets what slurm partition to use
#SBATCH --nodes=1 # Sets number of nodes
#SBATCH --ntasks=5 # Sets max number of tasks
#SBATCH --cpus-per-task=2 # Sets number of CPUs per task
#SBATCH --time=4:00:00 # Sets the walltime for the job

srun hostname

The output file slurm-<jobid>.out
will show the hostname of the
compute node the job ran on for the
number of tasks. In this example is
outputs the hostname 5 times in the
out file.

Slurm Scheduler
Slurm Batch Jobs

19

Batch mode with GPU
#!/bin/bash
#SBATCH --partition=gpu # Sets what slurm partition to use
#SBATCH --nodes=1 # Sets number of nodes
#SBATCH --ntasks=1 # Max is event specific
#SBATCH --gres=gpu:1 # number of GPU’s to use
#SBATCH --cpus-per-task=2 # Sets number of CPUs per task
#SBATCH --time=4:00:00 # Sets the walltime for the job

srun nvidia-smi

Output in the job out
file will show the
nvidia-smi results.

Slurm Batch Jobs
Slurm Scheduler

20

Basic Multi-node example

$ srun --ntasks=10 --nodes=4 --cpus-per-task=2 --partition=gpu --time=4:00:00 --label hostname

Output would look
similar to:

Slurm Batch Jobs
Slurm Scheduler

21

Hands-On Interactive
● Check the status of the node and verify that the partition you are using is available

$ sinfo

● Check the status of running jobs

$ squeue $user

● Submit an interactive job (this job will give direct command line access to the compute

node that gets assigned) that runs on 1 node, with 5 tasks and 2 cpus per tasks allocates

1 gpu for a time of 15 mins within the gpu partition.

$ srun --ntasks=5 --nodes=1 --cpus-per-task=2 --partition=<partition name>

--time=00:15:00 --gres=gpu:1 --pty /bin/bash

● Inside compute node verify GPU is visible

$ nvidia-smi

Result on next page

22

Hands-On Interactive

23

Hands-On Non-interactive

● Check the status of the node and verify that the partition you are using is available
$ sinfo

● Check the status of running jobs
$ squeue $user

● Submit an non-interactive job (this type of job will run on the node without any interaction

from the user) that will run on 1 node, with 8 tasks and 4 cpus per tasks and allocates 1

gpu for a time of 15 mins within a partition on the cluster.
$ srun --ntasks=8 --nodes=1 --cpus-per-task=8 --partition=<partition name> --time=00:15:00

--gres=gpu:1 --label hostname

Result on next page

24

Hands-On Non-interactive

25

● Additional resources
○ SchedMD
○ Open Hackathons technical resource page
○ Open Hackathons GitHub Repository

● Join the OpenACC and Hackathons Slack channel

● Licensing

Copyright © 2023 OpenACC-Standard.org. This material is released by OpenACC-Standard.org, in
collaboration with NVIDIA Corporation, under the Creative Commons Attribution 4.0 International
(CC BY 4.0). These materials include references to hardware and software developed by other
entities; all applicable licensing and copyrights apply.

 Resources and Links

https://slurm.schedmd.com/disclaimer.html
https://www.openhackathons.org/s/technical-resources
https://github.com/openhackathons-org
http://openacc-hackathons.slack.com

WWW.OPENACC.ORG
Learn more at

